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Abstract

Background: A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis

of diseases using microarray gene expression data. It has been demonstrated that gene expression data have

cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions.

However, most available statistical methods for gene selection do not take into consideration the cluster

structure.

Results: We propose a supervised group Lasso approach that takes into account the cluster structure in gene

expression data for gene selection and predictive model building. For gene expression data without biological

cluster information, we first divide genes into clusters using the K-means approach and determine the optimal

number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step,

we identify important genes within each cluster using the Lasso method. In the second step, we select important

clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to

allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply

the proposed method to disease classification and survival analysis with microarray data.

Conclusions: We analyze four microarray data sets using the proposed approach: two cancer data sets with

binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show

that the proposed approach is capable of identifying a small number of influential gene clusters and important
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genes within those clusters, and has better prediction performance than existing methods.

Background

Development in microarray techniques makes it possible to profile gene expression on a whole genome scale

and study associations between gene expression and occurrence or progression of common diseases such as

cancer or heart disease. A large amount of efforts have been devoted to identifying genes that have

influential effects on diseases. Such studies can lead to better understanding of the genetic causation of

diseases and better predictive models. Analysis of microarray data is challenging because of the large

number of genes surveyed and small sample sizes, and presence of cluster structure. Here the clusters are

composed of co-regulated genes with coordinated functions. Without causing confusion, we use the phrases

“clusters” and “gene groups” interchangeably in this article.

Available statistical approaches for gene selection and predictive model building can be roughly classified

into two categories. The first type focuses on selection of individual genes. Examples of such studies range

from early studies of detecting marginally differentially expressed genes under different experimental

settings [1] to selecting important genes for prediction of binary disease occurrence [2, 3] and detecting

genes associated with patients’ survival risks [4, 5]. Since the dimension of gene expressions measured

(∼ 103−4) is much larger than the sample size (∼ 102), variable selection or model reduction are usually

needed. Previously employed approaches include the singular value decomposition [6], principal component

analysis [7], partial least squares [3] and Lasso [8], among others. These approaches aim at identifying a

small subset of genes or linear combinations of genes–often referred as super genes, that can best explain

the phenotype variations. A limitation of these approaches is that the cluster structure of gene expression

data is not taken into account.

Biologically speaking, complex diseases such as cancer, HIV and heart disease, are caused by mutations in

gene pathways, instead of individual genes. Statistically speaking, there exist genes with highly correlated

expressions and should be put into clusters [9]. Although functional groups and statistical clusters may not
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match perfectly, they tend to have certain correspondence [10,11].

The second type of methods focuses on detecting differential gene clusters. Examples include the global

test [12], the maxmean approach [13] and the gene set enrichment analysis [14]. In classification and

survival analysis, cluster-based approaches have also been considered [5, 15]. One approach is to construct

gene clusters first, which can be based on statistical measurements (for example K-means or Hierarchical

methods) or biological knowledge [16] or both. Then the mean expression levels are used as covariates in

downstream analysis [17]. With the simple cluster based methods, it is assumed that if a cluster is strongly

associated with the outcome, then all genes within that cluster are associated with the outcome, which is

not necessarily true. Within cluster gene selection may still be needed.

Lasso [18] is a popular method for variable selection with high-dimensional data, since it is capable of

producing sparse models and is computationally feasible. For example, this method has been used for

correlating survival with microarray data [8]. Standard Lasso approach carries out variable selection at the

individual gene level. A recent development of the Lasso is the group Lasso method [19] (referred as

GLasso hereafter). The GLasso is designed for selecting groups of covariates. In a recent study, [20]

proposes logistic classification with the GLasso penalty and considers its applications in microarray study.

Direct application of the GLasso can identify important gene groups. However, it is not capable of

selecting important genes within the selected groups. The fitted model may not be sparse, especially if the

clusters are large.

In this article, we propose a supervised group Lasso (SGLasso) approach, which selects both important

gene clusters and important genes within clusters. Compared to individual gene based approaches such as

Lasso, the SGLasso takes into consideration the cluster structure and can lead to better predictions, as

shown in our empirical studies. Compared to cluster based methods such as the GLasso, the within-cluster

gene selection aspect of SGLasso leads to more parsimonious models and hence more interpretable gene

selection results. The proposed approach is applicable as long as the objective function is well defined and

locally differentiable. In this article, we apply the SGLasso to logistic binary classification and Cox survival

analysis problems with microarray gene expression data.
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Results
Binary classification

Colon data. In this dataset, expression levels of 40 tumor and 22 normal colon tissues for 6500 human

genes are measured using the Affymetrix gene chips. A selection of 2000 genes with the highest minimal

intensity across the samples has been made by [2], and these data are publicly available at [21]. The colon

data have been analyzed in several previous studies using other statistical approaches, see for

example [3, 22,23].

Nodal data. This dataset was first presented by [24,25]. It includes expression values of 7129 genes of 49

breast tumor samples. The expression data were obtained using the Affymetrix gene chip technology and

are available at [26]. The response describes the lymph node (LN) status, which is an indicator for the

metastatic spread of the tumor, a very important risk factor for the disease outcome. Among the 49

samples, 25 are positive (LN+) and 24 are negative (LN−). We threshold the raw data with a floor of 100

and a ceiling of 16000. Genes with max(expression)/ min(expression) < 10 and/or

max(expression)−min(expression) < 1000 are also excluded (Dudoit et al. 2002). 3332 (46.7%) genes

pass the first step screening. A base 2 logarithmic transformation is then applied. The Nodal data have

also been studied by [22].

Although there is no limitation on the number of genes that can be used in the proposed approach, we first

identify 500 genes for each dataset based on marginal significance to gain further stability as in [23].

Compute the sample standard errors of the d biomarkers se(1), . . . , se(d) and denote their median as

med.se. Compute the adjusted standard errors as 0.5(se(1) + med.se), . . . , 0.5(se(d) + med.se). Then the

genes are ranked based on the t-statistics computed with the adjusted standard errors. The 500 genes with

the largest absolute values of the adjusted t-statistics are used for classification. The adjusted t-statistic is

similar to a simple shrinkage method discussed in [27].

For the Colon and Nodal data, clusters are constructed using the K-means approach and the Gap statistic

is used to select the optimal number of clusters. We show in Figure 1 the Gap statistic as a function of the

number of clusters. 9 clusters are constructed for the Colon data and 20 clusters are constructed for the

Nodal data. Details of the clustering information are available upon request. With the generated clusters,

we apply the proposed SGLasso approach. Tuning parameters are chosen using 3-fold cross validation.

Summary model features are shown in Table 1. For the Colon data, 22 genes are present in the final model,
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representing 8 clusters. For the Nodal data, 66 genes are selected, representing 17 clusters. We list the

identified genes in Tables 2 and 3.

For the Colon data, gene Has.1039 has also been identified to be associated with Colon cancer in [28,29].

Gene Hsa.42949 is estrogen sulfotransferase. Research show that certain compounds, such as soy, have

protective effect for colon cancer. The protective role of these compounds could be due to an ability to

inhibit competitively the activation of promutagenic estrogen metabolites into carcinogens by estrogen

sulfotransferases. The official symbol of gene Hsa.1454 is CSNK1E. Studies have revealed a negative

regulatory function of CK1 in the Wnt signaling pathway, where CK1 acts as a negative regulator of the

LEF-1/beta-catenin transcription complex, thereby protecting cells from development of cancer. Gene

Hsa.8214 has official symbol DCGR6. It has been shown to be associated with mammary cancer and tumor

cell proliferation in general. Gene Hsa.462 (official symbol SERPINC1) has been shown to be related to

cancer cell proliferation. Gene Hsa.627 is also identified as a Colon cancer biomarker in [28]. Gene Hsa.696

has official symbol BTN1A1. RT-PCR analysis has revealed strongest expression of BTNL3 in small

intestine, colon, testis, and leukocytes. Tristetraproline (gene Hsa.1682) has been reported to negatively

regulate tumor necrosis factor alpha (TNF-alpha) production by binding the AU-rich element within the 3’

noncoding sequences of TNF-alpha mRNA. Gene Hsa.3016 is S100P protein. 100P is expressed in human

cancers, including breast, colon, prostate, and lung. In colon cancer cell lines, its expression level was

correlated with resistance to chemotherapy.

For the Nodal data, gene U27185 at has official Symbol RARRES1. Also known as TIG1, the expression of

this gene is upregulated by tazarotene as well as by retinoic acid receptors. Silencing of TIG1 promoter by

hypermethylation is common in human cancers and may contribute to the loss of retinoic acid

responsiveness in some neoplastic cells. The role of the matrilins (gene U69263) in tumorigenesis has not

been studied. However, a related family of proteins (fibulins) has been implicated in cancer. Increased

fibulin expression is seen in breast cancer, lung adenocarcinoma, colon cancer, and other solid tumors,

suggesting that these proteins might play a role in tumor formation or progression. Gene U07223 is a

member of the chimerin family and encodes a protein with a phorbol-ester/DAG-type zinc finger, a

Rho-GAP domain and an SH2 domain. Decreased expression of this gene is associated with high-grade

gliomas and breast tumors, and increased expression of this gene is associated with lymphomas. Findings

suggest that CEACAM1 (gene X16354) participates in immune regulation in physiological conditions and
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in pathological conditions, such as inflammation, autoimmune disease, and cancer. Gene D87071 at is a

confirmed breast cancer biomarker. Ras (gene J00277) and c-Myc play important roles in the up-regulation

of nucleophosmin/B23 during proliferation of cells associated with a high degree of malignancy, thus

outlining a signaling cascade involving these factors in the cancer cells. GNA11 (gene M69013) is involved

in signaling of gonadotropin-releasing hormone receptor, which negatively regulates cell growth.

Down-regulation is suggested to be involved in human breast cancers. Gene D59532 encodes a member of

the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. Members of this family share a

common protein fold and have diverse functions, such as cell adhesion, cell-cell signaling, glycoprotein

turnover, and roles in inflammation and immune response. Gene X53587 is human mRNA for integrin beta

4. Colonization of the lungs by human breast cancer cells is correlated with cell surface expression of the

alpha(6)beta(4) integrin and adhesion to human CLCA2 (hCLCA2), Tumor cell adhesion to endothelial

hCLCA2 is mediated by the beta(4) integrin, establishing for the first time a cell-cell adhesion property for

this integrin that involves an entirely new adhesion partner. This adhesion is augmented by an increased

surface expression of the alpha(6) beta(4) integrin in breast cancer cells selected in vivo for enhanced lung

colonization but abolished by the specific cleavage of the beta(4) integrin with matrilysin. Wnt-5a (gene

L20861) has been shown to influence the metastatic behavior of human breast cancer cells, and the loss of

Wnt-5a expression is associated with metastatic disease. NFAT1, a transcription factor connected with

breast cancer metastasis, is activated by Wnt-5a through a Ca2+ signaling pathway in human breast

epithelial cells. Endogenous RXR beta (gene M84820) contributes to ERE binding activity in nuclear

extracts of the human breast cancer cell line MCF-7. Detailed microscopic analysis of the morphology of

MCF7 breast cancer cells lacking CtBPs (gene U37408) reveals an increase in the number of cells

containing abnormal micronucleated cells and dividing cells with lagging chromosomes, indicative of

aberrant mitotic chromosomal segregation. Methyl-CpG-binding domain protein-2 (gene X99687) mediates

transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer

cells. The nmt55/p54nrb protein (gene U02493) is post-transcriptionally regulated in human breast tumors

leading to reduced expression in ER- tumors and the expression of an amino terminal altered isoform in a

subset of ER+ tumors. Expression of elastin (gene U77846) in breast carcinoma cells has been

demonstrated by immunohistochemistry and in situ hybridization. Cytochrome P450 1B1 (CYP1B1, gene

X07618) is active in the metabolism of estrogens to reactive catechols and of different procarcinogens. The

CYP1B1 gene polymorphisms do not influence breast cancer risk overall but may modify the risk after

long-term menopausal hormone use. Genetic deficiency of DPYD enzyme (gene U09178) results in an error
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in pyrimidine metabolism associated with thymine-uraciluria and an increased risk of toxicity in cancer

patients receiving 5-flourouracil chemotherapy.

We evaluate the prediction performance of the proposed approach via Leave-One-Out (LOO) cross

validation. For the Colon and Nodal data, we compute the LOO cross validation errors. In this evaluation

process, tuning parameters are computed using 3-fold cross validation for each reduced set. For comparison

purposes, we also consider the following alternative approaches.

1. Lasso: we ignore the clustering structures and apply the Lasso directly. This approach has been

considered in [18] for Cox survival analysis and [23] for logistic binary classification.

2. GLasso: we ignore the first step supervised selection and apply the GLasso directly. For binary

classification, the GLasso has been investigated in [20].

3. Simple clustering: with the generated clusters, we compute the median of the gene expression level

for each cluster. The medians are used as covariates. Since the number of “covariates” is less than

the sample size, logistic/Cox models can be fit directly. This mimics the approach in [5].

For the alternative approaches, we also compute the LOO cross validation errors. Tuning parameters when

presented are also chosen via 3-fold cross validation. Comparison results are shown in Table 1.

We can see from Table 1 that the SGLasso is capable of feature selection at both the cluster level and the

within cluster gene level. The number of genes selected is much less than its counterpart from the simple

clustering approach and GLasso. The Lasso is also capable of selecting a small number of genes. Especially

we note that the number of genes selected by Lasso is smaller than by SGLasso. For simple data sets such

as the Colon data, the Lasso prediction error is the same as the SGLasso. However for data sets that are

more difficult to classify (Nodal), the SGLasso prediction error is much smaller. Both data sets have also

been analyzed by other approaches. For the Colon data, ROC based approach has prediction error 0.14 [23];

LogitBoost has classification errors 0.145, 0.194 and 0.161 [22]; and classification tree has classification

error 0.145 [22]. We note that since different sets of genes are used in those studies, Table 1 only provides

rough comparisons. For the Nodal data, in [22], LogitBoost yields prediction error 0.184, 0.265 and 0.184,

while classification tree has prediction error 0.204 and 1-nearest neighbor has prediction error 0.367.

Survival analysis

Follicular lymphoma data. Follicular lymphoma is the second most common form of non-Hodgkin’s
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lymphoma, accounting for about 22 percent of all cases. A study was conducted to determine whether the

survival probability of patients with follicular lymphoma can be predicted by the gene-expression profiles of

the tumors at diagnosis [5]. Fresh-frozen tumor-biopsy specimens and clinical data from 191 untreated

patients who had received a diagnosis of follicular lymphoma between 1974 and 2001 were obtained. The

median age at diagnosis was 51 years (range 23 to 81), and the median follow up time was 6.6 years (range

less than 1.0 to 28.2). The median follow up time among patients alive at last follow up was 8.1 years.

Eight records with missing survival information are excluded from the downstream analysis. Detailed

experimental protocol can be found in [5].

Affymetrix U133A and U133B microarray genechips were used to measure gene expression levels from

RNA samples. A log2 transformation was applied to the Affymetrix measurements. We first filter the

44928 gene measurements with the following criteria: (1) the max expression value of each gene across 191

samples must be greater than 9.186 (the median of the maximums of all probes). (2) the max-min should

be greater than 3.874 (the median of the max-min of all probes). (3) Compute correlation coefficients of

the uncensored survival times with gene expressions. Select the genes whose correlation with survival time

is greater than 0.2. There are 729 genes that pass this screening process. We normalize genes across

samples to have mean 0 and variance 1.

Mantel cell lymphoma data. [4] reported a study using microarray expression analysis of mantle cell

lymphoma (MCL). The primary goal of this study was to discover genes that have good predictive power

of patient’s survival risk. Among 101 untreated patients with no history of previous lymphoma included in

this study, 92 were classified as having MCL, based on established morphologic and immunophenotypic

criteria. Survival times of 64 patients were available and other 28 patients were censored. The median

survival time was 2.8 years (range 0.02 to 14.05 years). Lymphochip DNA microarrays [15] were used to

quantify mRNA expression in the lymphoma samples from the 92 patients. The gene expression data that

contain expression values of 8810 cDNA elements are available at [30].

We pre-process the data as follows to exclude noises and gain further stability: (1) Compute the variances

of all gene expressions; (2) Compute correlation coefficients of the uncensored survival times with gene

expressions; and (3) Select the genes with variances larger than the first quartile and with correlation

coefficients larger than 0.25. 834 out of 8810 genes (16.5%) pass the above initial screening. We
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standardize these genes to have zero mean and unit variance.

We use the K-means method and Gap statistic in the cluster analysis. 34 (Follicular) and 30 (MCL)

clusters are established. Plot similar to Figure 1 can be obtained and omitted here. Model estimation and

prediction features are also provided in Table 1. We show in Tables 4 and 5 the genes included in the final

models.

For the Follicular data, gene 23098 x a is associated with tumor protein p53. In transfected cells and

KSHV-infected B lymphoma cells, KSHV-encoded latency-associated nuclear antigen (LANA) expression

stimulates degradation of tumor suppressors von Hippel-Lindau and p53. In a recent case study with a

Japanese girl who had EEC3 and developed diffuse large B-cell type non-Hodgkin lymphoma, researchers

identified heterozygosity for a 1079A-G transition in exon 8 of the TP73L gene, resulting in a germline

asp312-to-gly (D312G) mutation. Gene 223333 s a is a member of the angiopoietin/angiopoietin-like gene

family and encodes a glycosylated, secreted protein with a fibrinogen C-terminal domain. The encoded

protein may play a role in several cancers and it also has been shown to prevent the metastatic process by

inhibiting vascular activity as well as tumor cell motility and invasiveness. Gene 224357 s a encodes a

member of the membrane-spanning 4A gene family. Members of this nascent protein family are

characterized by common structural features and similar intron/exon splice boundaries and display unique

expression patterns among hematopoietic cells and nonlymphoid tissues. Chemokines (genes 204470 at,

205114 s a) are a group of small (approximately 8 to 14 kD), mostly basic, structurally related molecules

that regulate cell trafficking of various types of leukocytes through interactions with a subset of

7-transmembrane, G protein-coupled receptors. Chemokines also play fundamental roles in the

development, homeostasis, and function of the immune system, and they have effects on cells of the central

nervous system as well as on endothelial cells involved in angiogenesis or angiostasis. Serpin A1 (gene

211429 s a) has an invasion-promoting effect in anaplastic large cell lymphoma. Gene 216950 s a has

official symbol FCGR1A. Findings showed that both Fcgamma RIA and FcgammaRIIA mediated

enhanced dengue virus immune complex infectivity but that FcgammaRIIA appeared to do so far more

effectively. TRPM4-mediated (gene 219360 s a) depolarization modulates Ca2+ oscillations, with

downstream effects on cytokine production in T lymphocytes. The protein encoded by gene 210973 s a is a

member of the fibroblast growth factor receptor (FGFR) family, where amino acid sequence is highly

conserved between members and throughout evolution. Chromosomal aberrations involving this gene are

10



associated with stem cell myeloproliferative disorder and stem cell leukemia lymphoma syndrome. FGFR-1

is expressed in early hematopoietic/endothelial precursor cells, as well as in a subpool of endothelial cells in

tumor vessels. Gene 227697 at encodes a member of the STAT-induced STAT inhibitor (SSI), also known

as suppressor of cytokine signaling (SOCS), family. Over expression of suppressor of cytokine signaling 3 is

associated with anaplastic large cell lymphoma.

Genes identified in the MCL study also have sound biological basis. When the positive cells are treated

with phosphatidylinositol-specific phospholipase C (gene Hs.522568), a significant decrease in both stain

intensity and percentage of positive cells is demonstrated by immunofluorescence. The protein encoded by

gene Hs.120949 is the fourth major glycoprotein of the platelet surface and serves as a receptor for

thrombospondin in platelets and various cell lines. Since thrombospondins are widely distributed proteins

involved in a variety of adhesive processes, this protein may have important functions as a cell adhesion

molecule. Mutations in this gene cause platelet glycoprotein deficiency. The protein encoded by gene

Hs.84113 belongs to the dual specificity protein phosphatase family. It was identified as a cyclin-dependent

kinase inhibitor, and has been shown to interact with, and dephosphorylate CDK2 kinase, thus prevent the

activation of CDK2 kinase. This gene was reported to be deleted, mutated, or overexpressed in several

kinds of cancers. Studies show TOP2A (gene Hs.156346) is a proliferation marker, indicator of drug

sensitivity, and prognostic factor in mantle cell lymphoma. This gene encodes a DNA topoisomerase, an

enzyme that controls and alters the topologic states of DNA during transcription. The gene encoding this

enzyme functions as the target for several anticancer agents and a variety of mutations in this gene have

been associated with the development of drug resistance. Reduced activity of this enzyme may also play a

role in ataxia-telangiectasia. Gene Hs.497741 encodes a protein that associates with the

centromere-kinetochore complex. Autoantibodies against this protein have been found in patients with

cancer or graft versus host disease. DNA Pol theta (gene Hs.241517) has a specialized function in

lymphocytes and in tumor progression. Gene Hs.298990 encodes tumor suppressor proteins. The protein

encoded by gene Hs.105956 catalyzes the transfer of galactose to lactosylceramide to form

globotriaosylceramide, which has been identified as the P(k) antigen of the P blood group system. PLG

(gene Hs.368912) has the potential to simultaneously regulate calcium signaling pathways and regulate pHi

via an association with NHE3 linked to DPP IV, necessary for tumor cell proliferation and invasiveness.

In the leave-one-out (LOO) based evaluation, denote β̂(−i) as the LOO estimate of β based on the
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reduced data set with the ith subject removed. We then compute the predicted risk score β̂(−i)Z′i for the

ith subject. Since the Cox model is a special form of the transformation model, the uncensored survival

time depends on βZ′ via a generalized linear model. So the prediction evaluation can be based on

comparing the survival functions of groups composed of different range of βZ′. A simple approach is to

first dichotomize the predicted risk scores at the median to create two risk groups with equal sizes. We

then compare the survival functions of the two generated risk groups. A significant difference (measured by

the logrank test statistic with degree of freedom 1) indicates satisfactory prediction performance.

We show the prediction comparison in Table 1. We can again see that the models obtained under SGLasso

are much smaller than those from the simple cluster approach and GLasso. However the SGLasso models

are larger than their Lasso counterparts. For both data sets, the proposed SGLasso has the largest logrank

statistics, indicating the best prediction performance. For the Follicular data, only Lasso and SGLasso

have logrank statistics with p-value less than 0.05. The GLasso and simple approaches cannot properly

predict survival based expressions. For the MCL data, all approaches have logrank statistics with p-value

less than 0.05, with the largest logrank statistic from the SGLasso.

Discussion
Remark: clustering method selection

Gene expression clustering can be based on many approaches including the K-means, hierarchical,

self-organizing map, and model based methods [31], among many others. Without making specific data

assumptions, there do not exist optimal clustering method. The proposed K-means approach has been

extensively used in microarray study. It is attractive because of its computational simplicity and optimality

under the normal distribution assumption. We have also analyzed the four data sets using other clustering

schemes including Hierarchical clustering. Our studies show that other approaches generate comparable or

worse prediction results than the K-means approach. Since the K-means method yields satisfactory

estimation and prediction results for the four data sets and other data (results not shown), we focus on the

K-means approach only. A comprehensive comparison of different clustering is interesting but beyond the

scope of this paper.

We propose using the Gap statistic for selecting the optimal number of clusters. Empirical studies in [32]

and this paper show that it can lead to satisfactory results. We note again that there is no best selection

method for number of clusters, unless stronger data assumptions are made. We refer to [33] for
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comprehensive discussions of gene clustering.

Remark: prediction evaluation

In our examples, we carry out gene screening before analysis. The goal of such screening is to remove noisy

genes and obtain more stable models. Gene screening has been employed in almost all microarray studies.

We note that such screening may lead to bias in the prediction evaluation, since all records have been used

in the screening. However since the number of genes passed screening is still large, the bias in the

prediction is expected to be small. Especially all four approaches listed in Table 1 use the same sets of

genes. So comparisons in Table 1 should be fair.

Remark: two-step gene selection

The proposed SGLasso is a two-step approach. Another two-step gene selection approach is the supervised

principal component analysis (SPCA, [34]). Significant differences exist between the SGLasso and other

two-step approaches like SPCA. In other two-step approaches, the first supervised screening step considers

all genes simultaneously. The cluster structure is ignored, whereas the main merit of the SGLasso is the

usage of the cluster structure. Moreover, in SPCA, the selected features are the principal components.

Although they may have satisfactory prediction performance, biological interpretations may not be clear.

As a comparison, clear biological interpretations of gene identification results are available as shown in the

Results section.

Conclusions

Gene selection is essential in classification or survival analysis using high dimensional microarray data.

Such selection can generate parsimonious, stable models with interpretable estimates. In this article, we

propose the SGLasso approach. This approach explicitly takes into account the cluster structure and

carries out feature selection at both the gene and cluster levels. Applications of this approach to four data

sets show that it can produce parsimonious predictive models with satisfactory prediction performance.

Compared to available approaches, the SGLasso is the first to consider penalized gene selection at both the

cluster level and the within cluster level. Compared to individual gene selection methods, the SGLasso is

capable of taking cluster information into consideration. This makes it possible to reveal the associations

between diseases and gene clusters. With the proposed approach, we can identify co-regulated genes which
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are jointly significantly associated with diseases. Compared to simple cluster based methods, SGLasso

carries out the additional within cluster selection. This leads to a small number of genes within each

cluster. So beyond identifying influential clusters, the proposed approach can also identify the genes that

actually cause the association. From a scientific point of view, identifying important genes (beyond

identifying important clusters) is critical.

As we point out, gene clusters can also be constructed based on biological information [16]. We should use

such information whenever available. However we also note that such pathway information is far from

complete or not available for many genes. In the absence of such information, we can use clustering

methods to divide genes into groups. It is of interest to compare results based on statistical clustering with

those based on biological clustering, when full pathway information is available. However, such empirical

studies is beyond the scope of the current paper and will be pursued in later studies.

Methods
Gene clustering

The proposed SGLasso assumes that the cluster structure has been well defined. When clusters of genes in

the same function groups can be constructed based on biological information such as GO [16], such clusters

can be used in the analysis. However it is often the case that gene group information may only be partially

available or even not available. In this case we propose defining cluster structure based on statistical

measurements [9].

We use the K-means approach in this paper. There exist many alternative clustering methods, such as the

hierarchical clustering, self-organizing map, tree-truncated vector quantization method, among others. For

data sets with unknown data structures, there exists no dominating approach. We use the K-means

approach since it is computationally affordable and relatively robust.

We propose using the Gap statistic [32] to determine the optimal number of clusters. With the K-means

approach, we first choose M–the largest number of clusters. Then for m = 1, . . . ,M :

1. Generate m clusters using the K-means approach. Denote rssm as the total within block sum of

squares.

2. Create a new data set by separately permuting each gene expression measurements. Apply the

K-means method to the permuted expression data. Let r̃ssm denote the resulting within cluster sum
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of squares. Repeat this for a number of times and compute the average ave(r̃ssm).

3. Compute the Gap statistic as gap(m) = ave(r̃ssm)− rssm.

Choose the value m that maximizes gap(m). We refer to [32] for detailed discussions of the Gap statistic.

Data settings

Let Z be a length d vector of gene expressions, and let Y be the clinical outcome of interest. Assume that

n i.i.d. copies of (Y,Z) are available. We generate m gene clusters using the K-means approach, where m is

chosen using the Gap statistic. We assume that the clusters have sizes p1, . . . , pm with p1 + . . . + pm = d.

We denote Z = (Z1, . . . ,Zm), where Zi contains the pi gene expressions in the ith cluster for i = 1, . . . , m.

We assume that Y is associated with Z through a parametric or semiparametric model Y ∼ φ(βZ′) with a

regression function φ and unknown regression coefficient β, where β = (β1, . . . , βm) and

βi = (βi1, . . . , βipi) for i = 1, . . . , m. In this article, we study the binary classification and censored survival

analysis problems because of their wide applications.

Binary classification

For classification problems, Y is the categorical variable indicating the disease status, for example

occurrence or stage of cancer. We focus on binary classification only. Suppose that Y = 1 denotes the

presence and Y = 0 indicates the absence of disease. We assume the commonly used logistic regression

model, where the logit of the conditional probability is logit(P (Y = 1|Z)) = α + βZ′ and α is the unknown

intercept. Based on a sample of n iid observations (Y1,Z1), . . . , (Yn,Zn), the maximum likelihood

estimator is defined as (α̂, β̂) = argmaxα,βRn(α, β), where

Rn(α, β) =
n∑

j=1

Yj log

(
exp(α + βZ′j)

1 + exp(α + βZ′j)

)
+ (1− Yj) log

(
1

1 + exp(α + βZ′j)

)
.

We always keep the intercept α in the model. For simplicity, we denote Rn(α, β) as Rn(β).

Survival analysis

For right censored survival data, Y = (T, ∆), where T = min(U, V ) and ∆ = I(U ≤ V ). Here U and V

denote the event time of interest and the random censoring time, respectively. The most widely used model

for right censored data is the Cox proportional hazards model [35] which assumes that the conditional

hazard function λ(u|Z) = λ0(u) exp(βZ′), where λ0 is the unknown baseline function and β is the
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regression coefficient. Based on a sample of n iid observations Xj = (Yj ,Zj), j = 1, . . . , n, the maximum

partial likelihood estimator is defined as the value β̂ that maximizes

Rn(β) =
n∏

j=1

{
exp(βZ′j)∑

k∈rj
exp(βZ′j)

}δj

,

where rj = {k : Tk ≥ Tj} is the risk set at time Tj .

Supervised group Lasso

For the logistic regression and Cox proportional hazards models, the SGLasso consists of the following

steps.

1. For cluster i = 1, . . . , m, compute β̂i–the cluster-wise Lasso estimate of βi. Especially,

β̂i = argmaxRn(βi) subject to |βi1|+ . . . + |βipi | ≤ ui,

where ui is the data-dependent tuning parameter and

Rn(βi) =
n∑

j=1

Yj log

(
exp(α + βiZi′

j )

1 + exp(α + βiZi′
j )

)
+ (1− Yj) log

(
1

1 + exp(α + βiZi′
j )

)

for binary classification and

Rn(βi) =
n∏

j=1

{
exp(βiZi′

j )∑
k∈rj

exp(βiZi′
j )

}δj

for Cox survival analysis. That is for cluster i, we only use genes within that cluster to construct

predictive models. Gene selection within that cluster is achieved with the Lasso. Sparse models are

achieved when ui → 0. We propose selection of ui using V-fold cross validation [36]. Especially we

note that tuning parameters ui are selected for each cluster separately. So we allow different tuning

parameters, hence different degrees of regularization for different clusters. This flexibility allows us to

detect more subtle structures that cannot be detected by applying the Lasso method to all the

genes/clusters at the same time.

2. For each cluster, the Lasso models have only a small number of nonzero coefficients. For cluster i,

denote Z̃i as the reduced covariate vector composed of covariates with nonzero estimated coefficients

in Step 1 cluster-wise models. Denote β̃
i

as the corresponding reduced unknown coefficient. We note

that the dimension of the genes may be greatly reduced via Step 1. For example in the examples, a

cluster with size ∼ 20 may only have 2 ∼ 5 genes presented in the reduced data.
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3. Construct the joint predictive model under the GLasso constraint. Especially,

ˆ̃
β = argmaxR̃n(β̃) subject to |β̃1|+ . . . + |β̃m| ≤ u,

where R̃n(β̃) is Rn(β) with β replaced by β̃ and Z replaced by Z̃. u is also chosen via V-fold cross

validation. With u → 0, estimates of some components of (β̃
1
, . . . , β̃

m
) can be exactly zero. Selection

of important clusters can then be achieved.

In our examples, the objective functions Rn are continuously differentiable and depend only on data and

the unknown regression coefficient β. Other smooth objective functions, for example the log-binomial

likelihood for binary classification or the least square type estimating equation for the AFT survival

model [37], can also be considered. The SGLasso only needs to assume that the expectation of the

objective function has well-separated maximum. However for the proposed computational algorithms to

work, we need to assume that the objective function is locally differentiable, i.e, it can be locally

approximated by a smooth function.

Computational algorithms

Since the Lasso constraint is not differentiable, standard derivative based maximization approaches, such

as the Newton-Raphson, cannot be used to obtain the Lasso estimate. In most previous studies, the

maximization relies on the quadratic programming (QP) or general non-linear programming which are

known to be computationally intensive. Moreover, the quadratic programming cannot be applied directly

to the settings where the sample size may be smaller than the number of predictors. The L1 boosting

based approach proposed by [38] provides a computationally feasible solution for high dimensional cases.

Algorithm I: L1 boosting Lasso

For the ith cluster:

1. Initialize βi = 0 and s = 0.

2. With the current estimate of βi = (βi1, . . . , βipi), compute φ(βi) = ∂Rn(βi)/∂βi. Denote the kth

component of φ as φk.

3. Find k∗ that minimizes min(φk(β),−φk(β)). If φk∗(β) = 0, then stop the iteration.
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4. Otherwise denote γ = −sign(φk∗(β)). Find π̂ that

π̂ = argmaxπ∈[0,1]Rn((1− π)β + πuiγηk∗),

where ηk∗ has the k∗th element equals to 1 and the rest equal to 0.

5. Let βik = (1− π̂)βik for k 6= k∗ and βk∗ = (1− π̂)βk∗ + γuiπ̂. Let s = s + 1.

6. Repeat steps 2–5 until convergence or a fixed number of iterations S has been reached.

The βi at convergence is the Lasso estimate. We conclude convergence if the absolute value of φk∗(β)

computed in step 3 is less than a pre-defined criteria, and/or if Rn(β) is larger than a pre-defined

threshold. Alternative algorithm can be LARS based. Since it is not the focus of this study, we omit

discussions of other computational algorithms.

For the GLasso, a LARS based approach is proposed in [19]. With high dimensional cases, a

computationally more affordable approach is proposed in [39]. This approach shares the same spirit as the

L1 boosting Lasso and they are both special cases of the gradient-based constraint maximization discussed

in [40]. This boosting based algorithm can be summarized into the following iterations.

Algorithm II: boosting group Lasso

1. Initialize β̃ = 0. Set ∆ as a sufficiently small positive scalar.

2. With the current estimate of β, calculate the gradient ∂Rn(β̃)/∂β̃.

3. Set b = β̃ − ∂R̃n(β̃)/∂β̃ and τ = {1, . . . , m}. Denote the pth component of b as bp.

4. Start Loop.

(a) Calculate the projection up = I(p ∈ τ)×
(
||bp||+ {u−∑

p∈τ ||bp||}/|τ |
)

for p = 1, . . . ,m, where

|τ | is the cardinality of τ .

(b) If (up ≥ 0) for all p, then abort the loop.

(c) Else update the active set τ = {p : up > 0}.

5. End Loop.

6. Get a new estimate β̃
p

= bpup/||bp|| for p = 1, . . . , m.

7. Repeat steps 2–6 until convergence or a fixed number of iterations has been reached.
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A graphic presentation

We use the following numerical example to graphically demonstrate the parameter path of the proposed

approach. For a better resolution, we only consider a small study with nine covariates (genes) and three

clusters. Since the proposed approach does not depend on the special format of the objective function, we

consider a simple linear regression model and use the least squares loss function.

Consider the linear model y = β1z1 + ... . . . + β9z9 + ε, where β = (β1, . . . , β9) is the vector of regression

coefficients and ε is the random error. We assume that there are three clusters, where (z1, z2, z3) form

cluster 1, (z4, z5, z6) form cluster 2 and the rest belong to cluster 3. We assume that all z are marginally

N(0, 1) distributed; the pairwise correlation coefficients are 0.4, 0.4 and 0.2 for covariates in clusters 1, 2,

and 3, respectively; and different clusters are independent. Moreover, we set

β = (−1,−1, 0,−1,−1, 0, 0, 0, 0). In this simulated dataset, we have three clusters, two of which are

associated with the outcome. Within the first two clusters, two out of three covariates contribute to the

outcome.

We generate 100 random data points from the above model. The regression parameters are estimated using

the Lasso, GLasso and SGLasso. Tuning parameters are selected using 3-fold cross validation. In Figure 2,

we show the parameter path as a function of the tuning parameter u. In the upper panels, we show the

parameter paths for Lasso (left) and GLasso (right). In the lower-left panel, we show parameter paths for

the first step estimates using the SGLasso. We see that the within-cluster Lasso has paths close to those in

the upper-left panel. The parameter paths for the second step SGLasso (lower-right panel) are similar to

those in the upper-right panel, with simpler structures due to the reduced number of covariates. The

SGLasso selects (z1, z2, z4, z5, z6) with nonzero estimates, while the Lasso selects the covariates

(z1, . . . , z6, z8), and the GLasso selects all covariates.
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Figure legends
Figure 1 - Gap statistics as a function of number of clusters.

Red solid line: Colon data; Green dashed line: Nodal data.

Figure 2 - Paths of parameter estimates for Lasso, GLasso and SGLasso.

Red lines, cluster 1; Blue lines, cluster 2; Green lines, cluster 3. Solid lines, β1, β4 and β7; Dashed lines, β2,

β5, and β8; Dashed-Dotted lines, β3, β6, and β9. The grey lines show the selected tuning parameters. C1,

C2 and C3 in the lower-left panel denote clusters 1, 2 and 3, respectively.
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Tables
Table 1 - Comparison of estimation and prediction performance of difference approaches. Nonzero:
number of genes in the final models. Cluster: number of clusters in the final models. Prediction: for
Colon and Nodal, Leave-One-Out prediction error; For Follicular and MCL, the logrank statistic.

Lasso Simple GLasso SGLasso
Colon Nonzero 19 500 500 22

Cluster – 9 9 8
Prediction 0.129 0.226 0.161 0.129

Nodal Nonzero 37 500 233 66
Cluster – 20 9 17
Prediction 0.245 0.163 0.122 0.122

Follicular Nonzero 15 729 233 79
Cluster – 34 2 13
Prediction 5.9 2.3 0.5 6.5

MCL Nonzero 15 834 132 28
Cluster – 30 3 3
Prediction 8.2 6.2 19.3 20.3
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Table 2 - Colon data: genes with nonzero estimates from SGLasso.
Est. Gene ID Gene Description
0.229 Hsa.1047 Small Nuclear Ribonucleoprotein Associated Protein B/B’;
0.385 Hsa.1410 TRANSLATIONAL INITIATION FACTOR 2 BETA SUBUNIT (HUMAN);
-0.058 Hsa.1039 Homo sapiens secretory pancreatic stone protein (PSP-S) mRNA
-0.110 Hsa.1013 PROFILIN I (HUMAN)
-0.018 Hsa.2809 IG MU CHAIN C REGION (HUMAN)
-0.072 Hsa.42949 ESTROGEN SULFOTRANSFERASE (Bos taurus)
-0.155 Hsa.1454 Human gamma amino butyric acid (GABAA) receptor beta-3 subunit mRNA
0.233 Hsa.8214 PUTATIVE SERINE/THREONINE-PROTEIN KINASE B0464.5 I
0.193 Hsa.1209 P14780 92 KD TYPE V COLLAGENASE PRECURSOR
-0.299 Hsa.8147 Human desmin gene, complete cds.
-0.511 Hsa.37937 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gallus)
0.181 Hsa.462 Human serine kinase mRNA, complete cds.
0.484 Hsa.627 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA
0.097 Hsa.601 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA
-0.525 Hsa.696 Human cleavage stimulation factor
0.238 Hsa.1682 TRISTETRAPROLINE (HUMAN)
-0.492 Hsa.1832 MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH MUSCLE ISOFORM
-0.254 Hsa.612 Human beta adaptin mRNA
0.967 Hsa.6814 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)
0.189 Hsa.3306 Human gene for heterogeneous nuclear ribonucleoprotein core protein A1.
0.227 Hsa.3016 S-100P PROTEIN (HUMAN)
0.167 Hsa.2928 H.sapiens mRNA for p cadherin.
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Table 3 - Nodal data: genes with nonzero estimates from SGLasso.

Estimate Gene ID Gene Description
0.008 D63486 at Human mRNA for KIAA0152 gene, complete cds
0.094 X74496 at H.sapiens mRNA for prolyl oligopeptidase
0.014 Y10260 at H.sapiens EYA1 gene
-0.063 U27185 at Human RAR-responsive (TIG1) mRNA, complete cds
-0.062 U69263 at Human matrilin-2 precursor mRNA, partial cds
0.001 D87673 at Human mRNA for heat shock transcription factor 4, complete cds
-0.100 M83233 at Homo sapiens transcription factor (HTF4A) mRNA, complete cds
0.011 U07223 at Human beta2-chimaerin mRNA, complete cds
-0.121 X16354 at Human mRNA for transmembrane carcinoembryonic antigen BGPa
0.451 M59916 at Human acid sphingomyelinase (ASM) mRNA, complete cds
0.047 U88898 r at Human endogenous retroviral H protease
0.104 X97630 at H.sapiens mRNA for serine/threonine protein kinase EMK
0.001 S83309 s at germ cell nuclear factor
-0.101 D87071 at Human mRNA for KIAA0233 gene, complete cds
0.013 J00277 at Human c-Ha-ras1 proto-oncogene, complete coding sequence
0.823 J02982 f at Human glycophorin B mRNA, complete cds
0.001 M69013 at Human guanine nucleotide-binding regulatory protein mRNA
-0.096 X92396 at H.sapiens mRNA for novel gene in Xq28 region
-0.091 Y00815 at Human mRNA for LCA-homolog. LAR protein
-0.116 AB000114 at Human mRNA for osteomodulin
0.016 D50532 at Human mRNA for macrophage lectin 2, complete cds
-0.072 M83221 at Homo sapiens I-Rel mRNA, complete cds
-0.061 X76717 at H.sapiens MT-1l mRNA
0.031 J02645 at Human translational initiation factor (eIF-2), alpha subunit mRNA
-0.070 X53587 at Human mRNA for integrin beta 4
-1.323 AFFX-CreX-3 st X03453 Bacteriophage P1 cre recombinase protein
-0.083 D80009 at Human mRNA for KIAA0187 gene
0.019 J04615 at Human lupus autoantigen mRNA, complete cds
0.009 L20861 at Homo sapiens proto-oncogene (Wnt-5a) mRNA
-0.056 L20971 at Human phosphodiesterase mRNA, complete cds
-0.026 M84820 s at Human retinoid X receptor beta (RXR-beta) mRNA, complete cds
0.156 U37408 at Human CtBP mRNA, complete cds
0.079 U89336 cds7 at receptor for advanced glycosylation end products gene
0.070 X76059 at H.sapiens mRNA for YRRM1
-0.084 X82207 at H.sapiens mRNA for beta-centractin (PC3)
0.025 X99687 at H.sapiens mRNA for methyl-CpG-binding protein 2
0.501 L38933 rna1 at the longest open reading frame predicts a protein of 202 amino acids
-0.034 U02493 at Human 54 kDa protein mRNA, complete cds
0.016 U77846 rna1 s at Human elastin gene, Human elastin gene
-0.102 X07618 s at Human mRNA for cytochrome P450 db1 variant a
-0.614 X15357 at Human mRNA for natriuretic peptide receptor (ANP-A receptor)
0.033 Y08265 s at H.sapiens mRNA for DAN26 protein, partial
-0.033 HG3521-HT3715 at Ras-Related Protein Rap1b
-0.078 L33075 at Homo sapiens ras GTPase-activating-like protein (IQGAP1) mRNA
0.011 X66364 at H.sapiens mRNA PSSALRE for serine/threonine protein kinase
-0.094 AF009674 at Homo sapiens axin (AXIN) mRNA, partial cds.
-0.379 AFFX-BioB-3 at J04423 E coli bioB gene biotin synthetase
-0.184 AFFX-BioDn-3 at J04423 E coli bioD gene dethiobiotin synthetase
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0.058 HG2465-HT4871 at Dna-Binding Protein Ap-2, Alt. Splice 3
0.017 D00762 at Human mRNA for proteasome subunit HC8
-0.090 HG1612-HT1612 at Macmarcks
-0.062 U09178 s at Human dihydropyrimidine dehydrogenase mRNA, complete cds
0.017 U29175 at Human transcriptional activator (BRG1) mRNA, complete cds.
-1.184 U39817 at Human Bloom syndrome protein (BLM) mRNA, complete cds
-0.211 U41344 at Human prolargin (PRELP) gene, 5’ flanking sequence
-0.080 X16832 at Human mRNA for cathepsin H (EC 3.4.22.16)
0.013 X99226 at H.sapiens mRNA for FAA protein
0.000 Z49878 at H.sapiens mRNA for guanidinoacetate N-methyltransferase
-0.105 X68560 at H.sapiens SPR-2 mRNA for GT box binding protein
0.048 HG3998-HT4268 at L-Glycerol-3-Phosphate:Nad+ Oxidoreductase
0.001 U79285 at Human clone 23828 mRNA sequence
0.003 X79981 at H.sapiens VE-cadherin mRNA
0.024 X98176 at H.sapiens mRNA for MACH-beta-1 protein.
0.001 Z18956 at H.sapiens mRNA for taurine transporter
0.014 U18548 at Human GPR12 G protein coupled-receptor gene, complete cds.
-0.281 Z22536 at Homo sapiens ALK-4 mRNA, complete CDS

27



Table 4 - Follicular data: genes with nonzero estimates from SGLasso.

Estimate Gene ID Gene Description
0.035 227117 at CDNA FLJ40762 fis, clone TRACH2002847
-0.049 228671 at hypothetical protein LOC199953
0.070 228776 at gap junction protein, alpha 7, 45kDa (connexin 45)
0.055 230448 at hypothetical protein MGC15523
-0.042 230297 x a synaptic Ras GTPase activating protein 1 homolog
0.091 230938 x a activating transcription factor 5
0.053 209863 s a tumor protein p73-like
0.002 224125 at pleckstrin homology domain containing, family N member 1
0.002 230826 at monocyte to macrophage differentiation-associated 2
0.001 238605 at Transcribed locus
0.005 222545 s a chromosome 10 open reading frame 57
0.062 239565 at CDNA FLJ37010 fis, clone BRACE2009732
0.022 242904 x a
0.026 222015 at Casein kinase 1, epsilon
0.032 219361 s a interferon stimulated exonuclease gene 20kDa-like 1
0.046 223333 s a angiopoietin-like 4
0.084 224357 s a membrane-spanning 4-domains, subfamily A, member 4
0.046 204470 at chemokine (C-X-C motif) ligand 1
0.023 205114 s a chemokine (C-C motif) ligand 3
0.118 208470 s a haptoglobin
0.058 237542 at Transcribed locus
0.052 202953 at complement component 1, q subcomponent, B chain
0.022 206214 at phospholipase A2, group VII
0.085 210321 at granzyme H (cathepsin G-like 2, protein h-CCPX)
0.054 214038 at chemokine (C-C motif) ligand 8
-0.074 201841 s a heat shock 27kDa protein 1
-0.028 211429 s a serpin peptidase inhibitor, clade A, member 1
-0.120 211470 s a sulfotransferase family, cytosolic, 1C, member 1
0.081 216950 s a Fc fragment of IgG, high affinity Ia, receptor (CD64)
-0.056 222694 at hypothetical protein MGC2752
-0.042 232618 at chromosome Y open reading frame 15A
-0.016 232874 at Dedicator of cytokinesis 9
-0.034 237222 at
0.024 240105 at Chromosome 21 open reading frame 66
-0.016 241755 at Ubiquinol-cytochrome c reductase core protein II
-0.032 242306 at TPA regulated locus
-0.040 243705 at DDHD domain containing 1
0.049 237131 at hypothetical protein LOC645469
0.042 238359 at
-0.045 242601 at hypothetical protein LOC253012
0.049 243101 x a Chromosome 20 open reading frame 160
0.059 219360 s a transient receptor potential cation channel, subfamily M
-0.006 226665 at AHA1, activator of heat shock 90kDa protein ATPase homolog 2
-0.007 231852 at
-0.009 241946 at zinc finger, DHHC-type containing 21
-0.009 208067 x a ubiquitously transcribed tetratricopeptide repeat gene
-0.009 210973 s a fibroblast growth factor receptor 1
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-0.006 220235 s a chromosome 1 open reading frame 103
-0.001 227697 at suppressor of cytokine signaling 3
-0.006 227404 s a Early growth response 1
-0.004 235102 x a GRB2-related adaptor protein
-0.007 209189 at v-fos FBJ murine osteosarcoma viral oncogene homolog
-0.001 213281 at V-jun sarcoma virus 17 oncogene homolog (avian)
-0.008 201694 s a early growth response 1
-0.003 202672 s a activating transcription factor 3
0.002 AFFX-r2-Hs
-0.088 223710 at chemokine (C-C motif) ligand 26
-0.091 228844 at solute carrier family 13, member 5
-0.023 233831 at hypothetical protein LOC644752
-0.058 234062 at CDNA FLJ12400 fis, clone MAMMA1002782
0.021 239574 at Enoyl Coenzyme A hydratase domain containing 3
0.044 240142 at
-0.140 215536 at major histocompatibility complex, class II, DQ beta 2
-0.045 218935 at EH-domain containing 3
-0.041 211177 s a thioredoxin reductase 2
0.014 231119 at replication factor C (activator 1) 3, 38kDa
0.032 232475 at chromosome 15 open reading frame 42
0.022 237546 at Transcribed locus
0.047 238201 at
0.072 239670 at
0.051 240607 at Hypothetical protein LOC150271
0.039 241411 at weakly similar to NP 055301.1 neuronal thread protein AD7c-NTP
0.002 223745 at F-box protein 31
0.002 230280 at tripartite motif-containing 9
-0.008 226771 at ATPase, Class I, type 8B, member 2
-0.010 226869 at Full length insert cDNA clone ZD77F06
-0.002 203029 s a protein tyrosine phosphatase, receptor type, N polypeptide 2
-0.005 209459 s a 4-aminobutyrate aminotransferase
-0.009 221790 s a low density lipoprotein receptor adaptor protein 1
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Table 5 - MCL data: genes with nonzero estimates from SGLasso.
Estimate Gene ID Gene Description

0.011 24860 Hs.522568, Phosphatidylinositol-specific phospholipase C
0.005 26556 Hs.173438, Fas apoptotic inhibitory molecule
0.018 28537 Hs.120949, CD36 antigen
0.030 28640 Hs.84113,Cyclin-dependent kinase inhibitor 3
-0.004 28679 Hs.469723, RNA, U17D small nucleolar
0.005 30010 Hs.85137, Cyclin A2
0.009 32690 Hs.3104, Kinesin family member 14
0.010 32973 Hs.58992, SMC4 structural maintenance of chromosomes 4-like 1
0.078 27095 Hs.156346, Topoisomerase (DNA) II alpha 170kDa
0.094 30157 Hs.497741, Centromere protein F, 350/400ka
0.100 30898 Hs.532755, Likely ortholog of mouse gene trap locus 3
0.084 31049 Hs.241517, Polymerase (DNA directed), theta
0.080 34771 Hs.524390, Tubulin, alpha, ubiquitous
-0.067 16541 Hs.30054, Coagulation factor V
-0.065 23972 Hs.431009, Zinc finger protein, multitype 2
-0.036 24262
-0.061 24379 Hs.120260, Immunoglobulin superfamily receptor translocation associated 1
-0.056 25058 Hs.298990, actin dependent regulator of chromatin
-0.101 25171 Hs.21388, Zinc finger, DHHC domain containing 21
-0.103 26192 Hs.530274, Aldolase B, fructose-bisphosphate
-0.037 27659 Hs.437336, Hypothetical protein MGC61571
-0.091 29653 Hs.40758, RAB30, member RAS oncogene family
-0.053 31196 Hs.508010, Fibronectin type III domain containing 3
-0.033 32497
-0.076 32947 Hs.522863, Chromosome Y open reading frame 15A
-0.076 33506 Hs.364045, Hypothetical protein LOC92270
-0.059 33892 Hs.105956, Alpha 1,4-galactosyltransferase
-0.060 34438 Hs.368912, Dipeptidylpeptidase 4
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Figure 1: Gap statistics as a function of number of clusters.
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Figure 2: The paths of parameter estimates for Lasso, GLasso and SGLasso. Red lines, cluster 1; Blue lines,
cluster 2; Green lines, cluster 3. Solid lines, β1, β4 and β7; Dashed lines, β2, β5, and β8; Dashed-Dotted
lines, β3, β6, and β9. The grey lines show the selected tuning parameters. C1, C2 and C3 in the lower-left
panel denote clusters 1, 2 and 3, respectively.
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